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Abstract. A quantitative analysis is presented of the increasing degree of dynamical
correlations with decreasing temperature in a fragile glass-former consisting of a two-dimensional
binary mixture of soft discs with a diameter ratio ofσ2/σ1 = 1.4. The analysis involves a study
of the spatial distribution of local relaxation times, defined as the time taken for each particle
to first travel a distancer from its initial position. For the binary mixture, a temperature-
independent optimum value ofr ≈ σ1 is found to maximize the spatial segregation of particles
into different kinetic domains. The regions of ‘fast’ and ‘slow’ particles grow in size as the
system is cooled, indicating an increasing degree of cooperativity in the particle dynamics. A
measure of the linear dimensions of these clusters is provided. It is shown that only ‘slow’
subsets of particles are caged on intermediate timescales and that the lifetime of these slow
domains increases dramatically with decreasing temperature in the supercooled mixture. A
substantial decay in the incoherent scattering functions can still be accomplished, however, on
these timescales, despite the relative immobility of a significant fraction of the system. A further
observation is a change in the manner in which relaxation progresses throughout the system with
cooling. At high temperatures the initially fast relaxing sites are randomly distributed throughout
the system, whereas at low temperatures they tend to be clumped together. This subsequently
results in a less homogeneous progression of relaxation at the lower temperatures, since relaxation
proceeds primarily by radiating outwards from existing fast centres.

1. Introduction

A consequence of the enhancement of cooperativity in particle motion with supercooling
is an increasingly coarser spatial fragmentation of the system under study into regions
that differ from one another in average relaxation rates. Such dynamical heterogeneity now
appears to be a common characteristic of fragile glass-forming materials, as many laboratory
experiments [1–4] and computer simulation studies [5–12] have substantiated.

In the present work, an investigation of the natural development of such kinetic
inhomogeneities in a specific system: a two-dimensional (2D) fragile glass-former, is
carried out via molecular dynamics (MD) simulations, in order to understand why below a
certain intermediate temperature, there is a dramatic slowing down of structural relaxation
beyond that attributed to the simple loss of thermal energy with decreasing temperature.
A preliminary report of this work can be found in reference [9]. The system consists of
an equimolar binary mixture of soft discs with a diameter ratio ofσ2/σ1 = 1.4. The
2D mixture has been chosen for the ease with which the spatial extent of dynamical
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correlations can be visualized, as well as for its amenability to computer simulation. This
binary mixture exhibits many of the characteristics of glassy relaxation observed in real
and simulated fragile glass-formers, such as stretched exponential and two-step decay
of relaxation functions, non-Arrhenius temperature dependence of relaxation times and a
substantial drop in the heat capacity at the computer glass transition temperature [10–14].
Comprehensive analyses of the structural and dynamical aspects of this system are presented
elsewhere [13, 14].

The procedure used to obtain the spatial distribution of relaxation times for the binary
mixture is the one introduced by Hurley and Harrowell [15] in their quantitative analysis
of the kinetic structure in a single-component 2D liquid of soft discs. They defined the
local relaxation timeτr of a given particle as the time taken by that particle to first move
a distancer from its initial position, i.e. the first passage time. Once the distribution of
τr is known, the particles can then be arbitrarily partitioned into ‘fast’ and ‘slow’ groups.
Hurley and Harrowell have shown that for the pure 2D liquid at a constant temperature,
there is a well-defined density-independent optimum value forr which maximizes the spatial
segregation of the fast and slow particles in the liquid. This value isr ≈ 0.8σ1. For the
2D binary mixture, we find that the optimum distance for maximizing the resolution of the
kinetic structure isr ≈ σ1. Details are provided in section 3.

By fixing the cut-off distancer atσ1 and monitoring the change in the spatial distribution
of the relaxation times as a function of temperature, we observe that at relatively high
temperatures, the slow and fast particles are randomly distributed throughout the system
with only a small degree of clustering into domains of similar mobility. However, as
the temperature is lowered, there is an increasing degree of spatial heterogeneity in the
particle dynamics, with the linear dimensions of the slow domains (and complementarily,
the fast domains, due to exclusion) increasing in size. By resolving the contributions
of the slow and fast factions of particles to the mean squared displacement (MSD), we
have also observed thatonly the slow particles are ‘caged’, as is evident from the plateau
in the MSD for this contribution, on timescales that at some of the low temperatures
that we have investigated extend to several orders of magnitude longer than the average
collision time tc in the mixture, which is defined to be the time at which the velocity
autocorrelation function first crosses zero. This collision time is only very weakly dependent
on temperature in the liquid, supercooled liquid and amorphous states. During the lifetime
of the caged particles, the incoherent scattering functions are observed to have decayed
by more than 80% except at the very lowest temperatures. These results are presented in
section 4.

A change in relaxation mechanism also occurs as the system is cooled. This can
be visualized as follows. We define a particle as having relaxed its local structure if
it has first moved a distancer > σ1 by a certain time. By plotting the positions of
successively greater numbers of the fastest particles, the progression of relaxation throughout
the system can be followed. We observe that at relatively high temperatures in the liquid
state, the initially fast relaxing sites appear randomly throughout the mixture. As time
progresses, relaxation proceeds by propagation outwards from these existing sites and
also by spontaneous emergence of new relaxing centres in previously slow domains. In
the dense low-temperature mixtures, however, the first few fastest particles tend to be
clumped together rather than being randomly distributed. The spreading of relaxation
outwards from these initially clustered fast sites then results in a less spatially homogeneous
distribution of relaxation. These results which are described in section 5 are another clear
representation of the increasing degree of cooperativity in particle dynamics at relatively
high densities.
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2. Model and computational details

We have carried out a series of MD simulations on a 2D system consisting of an equimolar
(x1 = N1/N = 0.5) mixture of two types of particle with diametersσ2 = 1.4 andσ1 = 1,
but with the same massm. The three pairwise-additive interactions are given by the purely
repulsive soft-core potentials:

uab(r) = ε
[σab
r

]12
a, b = 1, 2 (1)

whereσa = σaa andσab = (σa +σb)/2. The cut-off radii of the interactions were chosen to
be 4.5σab. The units of mass, length and time arem, σ1 andτ = σ1

√
m/ε respectively. A

total ofN = 1024 particles were enclosed in a square box with periodic boundary conditions.
The simulations were carried out at constant number of particles, pressure(P ∗ = Pσ 2

1/ε)

and temperature(T ∗ = kBT /ε, where kB is Boltzmann’s constant), using the constraint
MD algorithm of Evans and Morriss [16, 17] in which the instantaneous temperature and
pressure are strict constants of the motion. A third-order (four-value) Gear predictor–
corrector algorithm was used to integrate the equations of motion [17]. The time steps
employed were 0.0025τ for T ∗ > 1 and 0.005τ for T ∗ 6 1. For argon units ofε = 120kB ,
m = 6.6× 10−23 g andσ1 = 3.4 Å, these time steps correspond to approximately five
and ten femtoseconds respectively. The pressure was fixed atP ∗ = 13.5 and states at 16
different reduced temperatures in the rangeT ∗ ∈ [0.1, 5] were simulated. For this pressure,
the freezing temperatures of the monocomponent 2D liquid of small and large particles are
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Figure 1. The incoherent scattering functionsFs,1(k1, t) andFs,2(k2, t) of the small (top figure)
and large (bottom figure) particles respectively calculated at the wave vector corresponding to
the position of the first maximum in the respective partial structure factors. The wave vectors
have magnitudes ofk1 = 7.17σ−1

1 andk2 = 5.60σ−1
1 . From left to right the curves correspond

to T ∗ = 5, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.55, 0.5, 0.46, 0.4, 0.35, 0.3, 0.2, 0.1.
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T ∗f,1 = 0.95 andT ∗f,2 = 1.70 respectively. Full details of the simulations are provided in
reference [13].

In order to demonstrate at which temperature the system is able to reach equilibrium
within our simulation time window, we show in figure 1 the spectrum of incoherent
scattering functions,

Fs,a(k, t) = 1

Na

〈
Na∑
j=1

exp
{
ik · [rj(t)− rj(0)]

}〉
a = 1, 2 (2)

for both particle species. The angular brackets denote an average over time origins and an
angular average over the directions of the wave vectork. The magnitude ofk was chosen
to bek1 = 7.17σ−1

1 for Fs,1(k, t) andk2 = 5.60σ−1
1 for Fs,2(k, t). These correspond to the

positions of the first peak maximum in the respective partial structure factors, which are
only very weakly dependent on temperature. Figure 1 shows that the scattering functions
are able to decay to zero forT ∗ > 0.4. BelowT ∗ = 0.4, structural relaxation cannot fully
proceed to equilibrium due to the finite timescale of the simulations. Thus, the computer
glass transition temperatureT ∗g for these simulations, defined as the temperature at which
the system is no longer able to relax completely to equilibrium, lies betweenT ∗ = 0.4
and 0.3.

Another feature worth noticing in figure 1 is the two-step decay process of the relaxation
functions at the lower temperatures. The step is first observed atT ∗ ≈ 0.5. This temp-
erature will be denoted as a ‘crossover’ temperatureT ∗c to mark the perceived change
in the dynamics of the system at this temperature, such as the start of the departure of
the structural relaxation times with decreasing temperature from their high-temperature
Arrhenius dependence. The structural relaxation times here are defined to be the times
taken by the incoherent and intermediate scattering functions to decay to 1/e of their initial
values. Other dynamical changes atT ∗c are described in references [10, 11, 12, 14]. In
section 5 we shall demonstrate explicitly that there is a change in relaxation mechanism in
going from above to belowT ∗c . This is not surprising since the appearance of the second
slower relaxation process atT ∗c in figure 1 denotes the start of a rapidly increasing separation
in timescales between fast and slow relaxation with decreasing temperature.
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Figure 2. Representative spatial relaxation time maps at (a)T ∗ = 1 and (b)T ∗ = 0.4 for a
cut-off distance ofr = 0.1σ1. The circles represent the particle positions at an initial time. The
fastest 40% of particles are shown by the unfilled circles, the intermediate 20% are shaded grey
and the slowest 40% are black. The particles are not drawn to scale.
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Figure 3. Representative spatial relaxation time maps at (a)T ∗ = 1, (b)T ∗ = 0.6, (c)T ∗ = 0.5
and (d)T ∗ = 0.4 for a cut-off distance ofr = σ1. The key is the same as for figure 2. Observe
the increase in the clustering of the slow particles (black circles) in going fromT ∗ = 1 to 0.4.

3. Kinetic analysis

3.1. Resolving the kinetic structure

We define a local relaxation timeτr(i) of a given particlei to be the time that particle
takes to first move a distancer from its initial position. As discussed by Hurley and
Harrowell [15], the proper choice ofr is crucial in resolving the intermediate-time kinetic
heterogeneities in the liquid. If the lengthr is too short, then the oscillatory motion of
the particles at their local positions cannot be distinguished from diffusive motion. As a
result, the spatial distribution of the local relaxation times will be random. This is shown
in figure 2 for r = 0.1 for the equimolar binary mixture atT ∗ = 1 and 0.4. Here the fast
and slow particles are randomly distributed throughout the simulation cell (compare with
figure 3) and one cannot differentiate between the high- and low-temperature systems by
just looking at these spatial relaxation time maps.

At the other extreme, if the distancer is too long, there will also be little correlated
structure in the relaxation time maps, since particles would have sampled several fast and
slow domains before exceeding this distance. Thus, the degree of spatial segregation of
the kinetic inhomogeneities in sufficiently dense systems is expected to pass through a
maximum asr is increased from zero. For the binary mixture this maximum, as shall be
described later below, occurs whenr ≈ 1.0. Examples of what the kinetic structure looks
like for r = 1 are shown in figure 3 forT ∗ = 1, 0.6, 0.5 and 0.4. Here the fastest 40%
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and the slowest 40% of particles at their initial positions for a given run are shown by the
open and filled circles respectively. Although the distribution of relaxation times is mapped
over theinitial positions of the particles, a similar amount of correlated structure at a given
temperature and the trends observed in figure 3 as the system is cooled are also obtained if
the final positions of the particles are used instead, since the particles have not moved very
far from their initial positions by the time the first 60% of the particles have first moved a
distance ofσ1. At T ∗ = 1, for example, the average MSD for this batch of fastest particles
at this time is less than 1.5σ 2

1 .
From figure 3 a clear clustering of particles into domains of similar mobility can be

seen as the system is cooled. In other words, the probability of a particle being slow if it
is initially surrounded by other slow particles, or being fast if it is originally in the midst
of fast neighbours, increases significantly as the temperature drops. Note that although the
relaxation time maps in these figures are for the same cut-off distancer, the average time
taken for all of the particles to first move the lengthr increases very rapidly with decreasing
temperature. In fact, for a given run atT ∗ = 0.4, the few slowest particles in the system
have not moved the distance ofσ1 even byt = 15 000τ which is greater than the time
taken for the incoherent scattering functions at this temperature to decay to zero as shown
in figure 1. We find that forr > 0.5σ1, the time required for the slowest 5% of particles
at T ∗ = 0.4 to first move the distancer becomes too long and impracticable to simulate.
We can still, however, plot the spatial distribution of fractions of fast and slow particles at
T ∗ = 0.4 as shown in figure 3(d), since once the relaxation times of the required number
of 40% fast and 20% intermediate particles are known, the rest of the particles can be
designated as slow without having to determine their relaxation times explicitly.
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Figure 4. The decay of the second momentm2(γ ) as defined in equation (3) forT ∗ = 1, 0.6
and 0.5. These curves are from the individual runs which gave rise to the relaxation time maps
of the corresponding temperatures shown in figure 3.

3.2. Quantifying the kinetic structure

In order to quantify the variation of the kinetic structure withr, as well as to measure the
increase in the size of the fast and slow domains with decreasing temperature, we perform
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the coarse-graining procedure of Hurley and Harrowell [15] and assign to each particlei

the mean local relaxation timeτi,γ of a subcell of dimensionγ × γ centred at the initial
position of particlei. The idea is that asγ is varied from 1 to the length of the simulation
boxL, the local relaxation timeτr(i) = τi,1 of particlei is expected to become uncorrelated
with the mean relaxation timeτi,γ . This is indicated by the decay of the second moment
m2(γ ) of τi,γ defined as

m2(γ ) =
〈
(τi,γ − τi,L)2

〉〈
(τi,1− τi,L)2

〉 γ ∈ [1, L] (3)

whereτi,L is the local relaxation time averaged over all the particles for a particular run,
and the angular brackets denote an average over subcells indexed byi and over different
configurations. An example of the decay ofm2(γ ) with γ is shown in figure 4 for the
binary mixture atT ∗ = 1, 0.6 and 0.5 for a cut-off distance ofr = 1.
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Figure 5. The variation of the kinetic correlation lengthξ(r), defined in equation (4), with the
cut-off distancer for (a) the equimolar binary mixture atT ∗ = 0.5, 0.6 and 1, and for (b) the
single-component system of small particles atT ∗ = 1 and 1.4. The error bars are twice the
standard deviations about the average data points.
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A measure of the spatial correlations in the particle dynamics for a particular value of
r is provided by the area underm2(γ ):

ξ(r) =
∫ L

1
m2(γ ) dγ. (4)

A plot of this characteristic lengthξ(r) versusr is given in figure 5(a) for the equimolar
binary mixture atT ∗ = 1, 0.6 and 0.5. Between 20 to 100 runs were averaged over to
obtainξ for each value ofr. There are several features to notice.

(i) At r = 0.1, the correlation lengthξ is the same for high and low temperatures,
consistent with the random configurations atT ∗ = 1 and 0.4 shown in figure 2 for this
cut-off distance.

(ii) As r is increased,ξ(r) goes through a broad maximum with an approximately
temperature-independent peak at aboutr = 1.0.

(iii) The height of this peak increases with decreasing temperature, again consistent
with the greater degree of clustering observed in figures 3(a) to 3(d) as the temperature is
lowered.

(iv) The maximum kinetic length at the peak is significantly longer than that associated
with random clustering at very smallr.

For comparison, the variation of the correlation length for the single-component system
of small particles is shown in figure 5(b) forT ∗ = 1 and 1.4. Here the maximum inξ(r)
occurs atr ≈ 0.8 in agreement with the temperature-independent value obtained by Hurley
and Harrowell in their constant-NVE simulations. In the case of the pure liquid, the increase
in the height of the peak inξ(r) is due to the formation of transient hexagonal clusters that
increase in size as the temperature is lowered. Eventually one of these crystalline nuclei
is able to span the entire system at the freezing transition,T ∗f,1 = 0.95, at which timeξ
diverges for all but the smallest values ofr. For the binary mixture, the increase in the
magnitude of the maximum correlation length with decreasing temperature is not due to any
phase separation and crystallization into ordered phases, but is instead brought about by an
increase in the degree of cooperative motion in the mixture.

The development of spatially heterogeneous dynamics in the 2D mixture is accompanied
by a slowing down of the system. In figure 6 we plot the temperature dependence of the
average local relaxation timeτav =

〈
τi,L

〉
for r = 1 in an Arrhenius plot. From now

on, the analysis is restricted to the case ofr = 1, where the resolution of the kinetic
structure is maximized. The same conclusions will be reached using other values ofr

around the peak maximum inξ(r). As can be seen,τav has an Arrhenius temperature
dependence down toT ∗ = 0.55. Below this temperature, the average relaxation time
diverges from Arrhenius behaviour. We were unable to determineτav at T ∗ = 0.4, since
this requires the relaxation of all particles and for this temperature, as mentioned above,
the time required for the very slowest particles to first move a distancer = 1 is too long
for us to simulate. Structural relaxation times determined from the decay of incoherent
and coherent intermediate scattering functions to 1/e of their initial values also display an
Arrhenius temperature dependence forT ∗ > 0.55, albeit with different activation energies,
and a departure from such high-temperature behaviour atT ∗ < 0.55 [10, 11, 12, 14].

In figure 6 we also show the temperature variation of a measure of the average width
of the distribution of local relaxation timesτr(i) aboutτav for r = 1, defined as

χ =
〈√√√√ 1

N − 1

N∑
i=1

(τr=1(i)− τav)2

〉
(5)



Dynamics in a 2D glass-forming binary mixture 10123

0.0 0.5 1.0 1.5 2.0 2.5
1 / T*

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g 10

 (
τ av

 / 
τ)

,  
 lo

g 10
 (

χ 
/ τ

)

τav 
χ
slope = 1.10

T* = 0.46

T* = 0.55

Figure 6. An Arrhenius plot of the temperature dependence of (i) the average local relaxation
time τav and (ii) the average standard deviationχ of the distribution of local relaxation times
about the mean for a cut-off distance ofr = σ1. The solid line is a linear regression through
log10 τav for the temperature rangeT ∗ ∈ [0.55, 5]. It has a slope of 1.10ε/kB .

where the angular brackets denote an average over different runs. As can be seen in figure 6,
this average standard deviationχ follows the temperature dependence ofτav and is greater
than 0.7τav for T ∗ ∈ [0.46, 5], reaching 0.93τav at T ∗ = 0.46. It is clear from the plot that
the width of the distribution of relaxation times broadens considerably as the temperature
is lowered.

3.3. Variation of the average relaxation time with the kinetic length scale

An interesting relationship is found between the average relaxation timeτav and the kinetic
correlation lengthξ(r = 1) in the moderately supercooled region. In figure 7 a plot of
log10 τav against log10 ξ(r = 1) is shown. It is found that in the rangeT ∗ ∈ [0.5, 1],
τav ∝ ξ4.3, which indicates how small increments inξ are magnified to much larger increases
in τav. The power law breaks down belowT ∗ = 0.5 where the temperature dependences
of the structural relaxation times from the intermediate scattering functions andτav are
observed to diverge from the high-temperature Arrhenius behaviour. Thus in the deeply
supercooled region, there is a dramatic slowing down with falling temperature which is
accompanied by only a very small increase inξ .

A power-law dependence similar to that described above was obtained by Yamamoto
and Onuki [6, 7] for the same system, but for different definitions of relaxation time and
kinetic correlation length. They studied the dynamics of this 2D mixture under varying
rates of shear using MD simulations. In their analysis, pairs of particles were considered
to be ‘bonded’ if at an initial time, the separation between themrij 6 1.1σab. At some
later time, a bond is defined to be broken ifrij > 1.6σab. By monitoring the distribution
of broken bonds, Yamamoto and Onuki observed that bond breakage became increasingly
spatially heterogeneous with decreasing temperature for a particular shear rate, and with
decreasing shear rate for a particular temperature. They defined a relaxation timeτb for a
given temperature and shear rate to be the time at which 5% of initial bonds are broken
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Figure 7. The variation of log10 τav with log10 ξ(r = 1) for the 2D binary mixture. The solid
line is a linear regression through the points for the temperature rangeT ∗ ∈ [0.5, 1]. It has a
slope of 4.3 which indicates thatτav ∝ ξ4.3 in this temperature interval.

in a time interval of 0.05τb. From the structure factor of the broken bond density, they
estimated the characteristic sizeξb of the clusters of broken bonds and obtainedτb ∝ ξ4

b for
all temperatures and shear rates used in their simulations. The temperature range that they
investigated wasT ∗ ∈ [0.337, 2.54].

To arrive at a similar scaling exponent from such different definitions of the kinetic
length scale suggests that the exponent of approximately 4 may be a robust feature of this
simple 2D mixture, at least over an intermediate range of timescales. It would be interesting
to investigate whether the power law with the same exponent holds for other diameter ratios
for which the 2D mixture can be quenched into amorphous states without crystallization.
Foley and Harrowell [18] have carried out the same analysis as we have done above for
the 2D facilitated kinetic Ising spin model [19] and obtainedτav ∝ ξ12.6. This much larger
exponent is most probably due to the higher degree of cooperativity that is built into this
system as a result of the specific dynamical correlations between spins that are explicitly
specified at the outset. Yamamoto and Onuki [7] have also performed their same bond
breakage analysis on a 3D equimolar binary mixture withσ2/σ1 = 1.2. This time they
obtainedτb ∝ ξ2

b for all temperatures and shear rates in their simulations. The smaller
exponent in 3D indicates that a greater degree of spatial correlation in particle kinetics is
required to ‘jam’ particle motion in 3D than in 2D, due to the additional degree of spatial
freedom in 3D. It would also be interesting to examine whether the power law with an
exponent of 2 is a general characteristic of systems of spherical particles in 3D.

4. Fast and slow contributions to self-diffusion

Once the distribution of local relaxation times at a particular temperature is known, particles
can be assigned arbitrarily into fast and slow subsets, and the contribution of each subgroup
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contributions to this average curve from the slowest 40% and the fastest 40% of particles in the
system for the cut-off distancer = σ1. The mixing timeτmix of the slow particles is defined as
the intersection of the extrapolated plateau height and the long-time linear behaviour as shown
by the dotted lines. (b) The solid lines are as in (a) above, and the dotted and dashed lines are
the contributions to each of these curves from the small and large particles respectively.

to time-dependent properties can be determined. In figure 8(a) we show the average MSD

〈
1r2(t)

〉 = (1/N) 〈 N∑
i=1

[ri(t)− ri(0)]2

〉

for all of the particles in the binary mixture atT ∗ = 1, as well as the contributions to this
average from the fastest 40% and the slowest 40% of particles, irrespective of particle type.
Although this fractioning is crude, it does serve to provide some important insights into the
dynamics of various subpopulations of particles.

At this junction, before describing the results shown in figure 8, a brief discussion is
required to explain the observed linear dependence of the MSD shown in figure 8 (and also in
figures 9 and 11—see later) at long times. In 1970, Alder and Wainwright [20] demonstrated
that persistent hydrodynamic flows were established around circular particles in very low
density 2D liquids. This ‘backflow’ results in a velocity autocorrelation function which
decays ast−1 and a MSD which grows faster than linearly with time. The self-diffusion
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coefficient defined equivalently as

D = 1

4
lim
t→∞d

〈
1r2(t)

〉
/dt

or

D = 1

2

∫ ∞
0
〈v(0) · v(t)〉 dt

where v(t) is the velocity vector of a particle at timet , must diverge under such
circumstances. In contrast to these results which have concentrated onlow density calc-
ulations, it was shown by Hurley and Harrowell [21] that for a single-component system
of soft discs near the freezing temperature, there is no long-time tail in the velocity
autocorrelation function and the MSD increases linearly with time in the diffusive
regime. We have also previously shown [22] that supercooled mixtures of soft discs with
varying diameter ratios exhibit similar long-time linear diffusive behaviour. At these low
temperatures and high densities, transient crystalline fluctuations are observed in the 2D
liquids. Spatial maps of velocity correlations, similar to those in reference [20], indicate
local elastic behaviour rather than hydrodynamic flow [23]. These features lead us to suggest
that propagating transverse modes become of increasing importance in transporting away
the local shear momentum as the density increases. This mechanism would diminish the
amplitude of any residual viscoelastic flow and, presumably, account for the absence of the
anomalous diffusive behaviour observed at much lower densities.

Returning to figure 8(a), although on intermediate timescales the average MSD over all
of the particles has already reached its long-time linear behaviour, a substantial fraction of
the system is still ‘caged’ as indicated by the plateau in the MSD of the slowest 40% of
particles. The lifetime of this slow cage is given by the mixing timeτmix, which we define
graphically in figure 8(a) as the time corresponding to the intersection of the extrapolated
plateau height and the extrapolated linear region beyond the plateau. Even in the fluid
mixture atT ∗ = 1, this mixing time is already approximately 690 average collision times
tc. (For T ∗ 6 3, tc = 0.11± 0.01τ and is only very weakly dependent on temperature.)
Beyondτmix, the slow particles have sampled faster domains and lost the memory of their
initial kinetic state. Hence the MSD of this slow fraction att > τmix has the same slope
as the total average. Similarly, the fastest 40% of particles retain their identity over many
collision times, as shown by the enhanced diffusion in figure 8(a), until mixing with slower
particles eventually results in a turnover of the MSD of this subgroup to the same slope
as for the average MSD over all of the particles. The mixing time of the fast particles is
shorter than that of the slower particles, since they are able to translate over longer distances
while the slow particles are caged. The stability of the kinetic structure that is defined by
the arbitrary partitioning of particles into 40% fast and 40% slow groups is determined by
the mixing time of the slow particles.

In figure 8(b), we show the contribution from the small and large particles respectively
to each of the MSD curves shown in figure 8(a). Observe that on the timescale over which
the slowest 40% of all the particles are caged,both the small and large particles in this
fraction are trapped. Only att ≈ τmix do the mean squared displacements of both of these
components diverge from one another to acquire the same slope as the MSD averaged over
all of the particles of the respective species. Similarly, each of the contributions from the
small and large particles in the fastest 40% subset rolls over to the same diffusion constant
as the global average over the corresponding species after the mixing time of this fast group.
In the diffusive region, it is not surprising that the diffusion constant of the small particles
is greater than that of the large particles given that the masses of both types of particle are
equal.
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linear regression through the points forτav in the rangeT ∗ ∈ [0.55, 5].

The height of the plateau in the MSD of the slowest 40% of particles decreases slightly
with falling temperature. This is shown in figure 9 where the MSD of this slow fraction is
plotted against time in a log–log plot for a range of temperatures fromT ∗ = 5 to 0.4. At
very short times, these slow particles undergo ballistic motion. The MSD then curves over
to a very small slope, indicating the trapping of the particles in the cage of their neighbours.
This plateau ends atτmix where there is a rapid upturn in the MSD which eventually leads to
diffusive motion. The lifetime of the transient cage increases significantly with decreasing
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temperature until it extends over more than three decades atT ∗ = 0.4.
The temperature dependence ofτmix is displayed in figure 10 in an Arrhenius plot. Also

shown for comparison is the temperature dependence ofτav and τMSD, which is the time
for which the MSD averaged over all of the particles is equal to 1.τav andτMSD coincide
within statistical error which indicates that the average time taken by the particles tofirst
move a distance ofσ1 is approximately the same as the time corresponding to an average
displacement ofσ1. The mixing timeτmix coincides withτav at higher temperatures, but
becomes slightly less thanτav at lower temperatures, with the difference between these two
times increasing in the non-Arrhenius region belowT ∗ = 0.55.

Despite the persistence of the transient slow domains over many collision times as
measured byτmix, a substantial amount of structural relaxation can still be accomplished.
This can be seen, for example, by noting the amount of decay inFs,1(k1, t) andFs,2(k2, t),
shown in figure 1, atτmix. More than 80% of the relaxation functions have decayed by the
time τmix is reached forT ∗ > 0.4 for Fs,1(k1, t) and forT ∗ > 0.5 for Fs,2(k2, t). At the
higher temperatures, even more than 90% relaxation can be accomplished beforeτmix. For
the incoherent scattering function of the larger particles which decays more slowly than that
of the small particles, at least 60% decay can still occur byτmix in the deeply supercooled
liquid at T ∗ = 0.46 and 0.4. These results imply that a significant amount of relaxation,
as measured by the incoherent scattering functions, can be accomplished by the enhanced
diffusion of the more mobile particles in the mixture beforeτmix (see figure (8a)), as well as
by correlated, small-amplitude, anharmonic fluctuations of the caged slow domains.These
results highlight an important point that, even though a particular relaxation function has
decayed substantially, there may still be significantly large regions in the system that are
relatively immobile and have not yet randomized their initially slow kinetic state.

The results in the previous paragraphs have focused on the crude partitioning of particles
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fractions of fast and slow particles were determined using the cut-off distancer = σ1.
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into the fastest 40% and the slowest 40%. This division, as stated earlier, is arbitrary. In
figure 11 we show the contributions to the MSD atT ∗ = 1 from the slowest and fastest
groups composed of three different numbers of particles. As can be seen, the mixing time
of the slowest subset of particles increases as the fraction of this group decreases, since
the more mobile particles are being sieved out and only the very slowest particles are
being left behind. For the slowest 10% of the particles, more than 95% ofFs,1(k1, t) and
Fs,2(k2, t) have decayed at this temperature while these particles are still caged, which again
emphasizes the fact that slower relaxational processes can still exist in the system despite the
nearly complete relaxation displayed by a specific relaxation function. For the fast particles,
as the size of this subpopulation is increased, the contribution to the MSD approaches that
of the total average and the mixing time increases, since more and more slow particles are
being added to this subgroup. This also explains why the diffusion constant of the enhanced
motion before mixing decreases as the fraction of fast particles is increased.

5. Visualization of relaxation kinetics

A picture of the temporal sequence of the process of relaxation in the 2D mixture can be
obtained by viewing individual spatial maps of the kinetic domains in order of the fastest
to slowest particles as described in the following. In figure 12 and continued in figure 13
we show a series of snapshots of the initial positions of an incrementally increasing fraction
of the fastest particles (determined usingr = 1) for a run atT ∗ = 1 and 0.4 for the binary
mixture. These are the same runs as were used to generate the configurations in figures 3(a)
and 3(d) for these temperatures. Figure 12 shows that forT ∗ = 1, the first 10% of the fastest
particles are randomly distributed throughout the system with very little clustering. This
allows for almost simultaneous relaxation in widely separated and disconnected regions.
The next 10% of the fastest particles emerge close to pre-existing fast sites, as well as
appearing spontaneously in slow domains. This trend continues as relaxation progresses.
At T ∗ = 0.4, a distinct difference in the sequence of relaxation can clearly be seen. The
majority of the first 10% of the fastest particles are clumped together rather than being
widely spaced out throughout the system. Relaxation then proceeds by spreading outwards
from these fast centres by the formation of string-like correlations of fast particles to link up
disconnected domains of fast particles. Fewer new relaxing centres appear spontaneously
in slow regions compared to the case forT ∗ = 1 and there is less mixing between fast and
slow particles, resulting in large compartmentalized blocks of diverse kinetics atT ∗ = 0.4
(compare the 60% configurations atT ∗ = 1 and 0.4 in figure 13).

The main difference between the spatial advancement of relaxation at the high and low
temperatures is that, because at the higher temperature, the first few fastest particles are
randomly distributed; the spreading of relaxation outwards from these fast relaxing sites
gives rise to a more spatially homogeneous distribution of relaxation. On the other hand,
because at the lower temperature, the initial fast particles tend to be clustered together; this
leads to a less uniform progression of relaxation throughout the system. The picture of
relaxation propagating outwards from fast relaxing sites is consistent with the general idea
of relaxation mediated by diffusing defects [24, 25].

The correlated string-like motion at the lower temperature involving a significant number
of particles over timescales more than four orders of magnitude longer than the average
collision time can also be observed in particle trajectory plots [10, 12, 14]. A detailed
analysis of the particle trajectories is provided in reference [14].
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Figure 12. The initial positions of the fastest 10%, 20% and 30% of particles determined using
r = 1 for single runs atT ∗ = 1 (on the left) andT ∗ = 0.4 (on the right). The small and
large particles are shown by the grey and black circles respectively. The particles are not drawn
to scale. Observe the random distribution of the first few fastest particles atT ∗ = 1, and the
clustering of these particles atT ∗ = 0.4.

6. Summary and conclusions

In summary, we have presented a quantitative analysis of the development of spatially
heterogeneous dynamics in a simple model fragile glass-former consisting of an equimolar
binary mixture of soft discs. By defining a local relaxation time in terms of the time taken
to first move a distancer from a starting position, the underlying kinetic structure at varying
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Figure 13. A continuation of figure 12 showing the initial positions of the fastest 40%, 50%
and 60% of particles forT ∗ = 1 (left) andT ∗ = 0.4 (right). These runs were used to generate
the relaxation time maps shown in figures 3(a) and 3(d) for these temperatures. In fact, the 60%
configurations shown here are the same as the spatial maps shown in figure 3 forT ∗ = 1 and
0.4 with the white regions in these configurations corresponding to the slow black domains in
figures 3(a) and 3(d).

length scales can be resolved. It is found that a distance of approximately one small particle
diameter is sufficient to maximize the segmentation of the particle dynamics into domains of
correlated kinetics that increase in size as the temperature drops. A kinetic correlation length
ξ was defined as a measure of the size of these clusters, and in the moderately supercooled
region down toT ∗ = 0.5, the average time taken to first travel a lengthr = σ1 was found
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to vary asτav ∝ ξ4.3. Below this temperature the power law breaks down asτav and other
structural relaxation times begin to increase much more rapidly than predicted by their
higher-temperature Arrhenius behaviour. Thus, in the deeply supercooled mixture, only a
very small increase in this correlation length accompanies the dramatic rise in relaxation
times, which suggests thatξ does not diverge belowTg. The power law with the same
exponent of 4 has been found in previous and different kinetic studies of this 2D mixture
by Yamamoto and Onuki [6, 7] which suggests that this exponent may be characteristic of
this particular system. They also obtain a smaller exponent of 2 for a 3D binary mixture.

From the distribution of local relaxation times, the contributions to time-dependent
correlation functions from varying fractions of the fastest and slowest particles in the
system can be determined. By analysing the contributions to the MSD from kinetically
disparate groups of particles, it is found that only subsets of the slowest particles are caged
on intermediate timescales. Even for a large fraction of 40% of the slowest particles, the
lifetime of the cage in the fluid mixture atT ∗ = 1 extends over more than two orders of
magnitude longer than the average collision timetc. The mixing time of these slowest 40%
of particles, which is the time required for this subgroup to lose the memory of its initial
kinetic state, increases with decreasing temperature, until in the deeply supercooled mixture
at T ∗ = 0.4, it is more than four orders of magnitude longer thantc. Both the small and
large particles in the slow subset are equally trapped during the lifetime of the transient
cage.

A substantial amount of initial decay in the incoherent scattering functions (more than
80% except at the very lowest temperatures) is observed to occur while a large fraction (40%)
of the system is still trapped in the transient cages. This indicates that a significant amount
of initial relaxation in the scattering functions is accomplished by the enhanced diffusion
of the fast particles that occurs before their mixing time, as well as by the small-amplitude
anharmonic oscillations of the slow particles in their cages. This result emphasizes the point
that even slower relaxational processes may still be prevalent despite the nearly complete
decay of a specific relaxation function.

The spatial development of relaxation as a function of temperature was also investigated
by plotting the positions of the particles in order of the fastest to the slowest. It is found
that at the higher temperatures, the first few fastest particles are randomly distributed in
the system, but at lower temperatures they tend to form large clusters. At both high and
low temperatures, relaxation proceeds primarily by spreading outwards from existing fast
sites, with a tendency to form ‘bridges’ of string-like correlations of particles to link up fast
domains that are initially separated from one another. Due to the initially less homogeneous
distribution of the fast particles at the lower temperatures, this mechanism of relaxation
results in a spatial fragmentation of the system into large blocks of slow and fast kinetics
in the deeply supercooled mixture.

In conclusion, the emergence of a slower relaxational process with decreasing temp-
erature in the 2D binary mixture is shown to be intricately coupled to the onset of an
increasing degree of dynamic heterogeneity in the system, which is induced by the growing
degree of cooperativity in particle dynamics with increasing density. This heterogeneity
is characterized by both a broadening of the distribution of local relaxation times and an
increasingly coarser distribution in space of these times with supercooling. This work has
provided a quantitative and visual analysis of the development of these spatial diversities
in local kinetics. The methodology can easily be extended to 3D. Recently, Perera and
Harrowell [11] have presented another method of detecting dynamic heterogeneity without
the need to resort to an explicit resolution of the spatial distribution of local mobilities. They
have also shown how the growing degree of dynamic heterogeneity is responsible in part



Dynamics in a 2D glass-forming binary mixture 10133

for the different temperature dependences of structural relaxation and self-diffusion [11].
As mentioned in the introduction, there is growing evidence from real experiments and

computer simulations of the existence of kinetic inhomogeneities in many other supercooled
fragile glass-formers. This leads to an inevitable question of whether the development of
slow (or glassy) relaxation with supercooling is inseparable from that of spatially hetero-
geneous dynamics in fragile liquids. It seems plausible that this is indeed a general feature
of fragile liquids. As the liquid is cooled below its freezing temperature, there is always an
increasing thermodynamic driving force which will favour local ordering. Regions which do
not lie close to structural defects will become increasingly more ordered as the temperature
drops. These locally ordered domains are expected to become the slowest relaxing regions
in the system. As the size and lifetime of these slow ordered clusters increase, so too
does the degree of dynamic heterogeneity and slow relaxation increase in the system. For
strong liquids, which have a three-dimensional, tetrahedral or other network pervading the
system, the local ordering which arises from the loss of thermal energy is expected to be
homogeneously distributed throughout the system. Thus, these systems are expected to slow
down continuously with decreasing temperature without any dramatic changes in dynamics.
In order to test this prediction, more experiments to probe transient kinetic inhomogeneities
need to be conducted on both fragile and strong liquids alike. The author is unaware of
any such experiments being carried out on supercooled strong liquids. Direct observation
of the sizeand spatial distribution of local kinetic domains in real systems also remains a
formidable experimental challenge.
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